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Abstract

We derive, in a complete markets environment, an investor’s op-
timal portfolio allocation subject to both a budget constraint and a
probabilistic risk constraint. We demonstrate that the set of feasible
portfolios need not be connected or convex, while the number of local
optima increases exponentially with the number of securities imply-
ing that finding the optimal portfolio is computationally complex (NP
hard). The resulting optimal portfolio allocation may not be mono-
tonic in the state–price density. A novel type of financial innovation,
which splits states of nature, is shown to weakly enhance welfare,
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plexity.
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1 Introduction

Economists have grappled formally with the problem of portfolio optimiza-
tion subject to a budget constraint since Markowitz (1952). It is however of
interest to embed this problem in a richer context, such as the introduction
of an additional constraint on possible losses. Examples are the safety–first
criterion (Roy, 1952) and the closely related concept of portfolio insurance,
(Leland, 1980) which rules out sufficiently adverse outcomes with probability
one. More recently, a different type of constraint has become popular within
the banking sector and regulators: Value–at–Risk (VaR)1 where the prob-
ability of adverse outcomes is restricted. We demonstrate that under this
probabilistic risk constraint the portfolio problem is NP–hard2, and hence
computationally intractable. We proceed to show that investors can simplify
their portfolio allocation problem and increase welfare through a financial
innovation that entails introducing additional redundant securities which are
lotteries over existing elementary Arrow–Debreu securities. By splitting ex-
isting states, we show that not only is utility increased, but also that an
otherwise NP–hard problem can easily be rendered solvable.

The particular setting we consider is a single period complete market spanned
by n Arrow-Debreu securities. The investor with initial wealth, W , can
purchase, for price pi at time, zero contingent claims on each state, i = 1, .., n,
which pay out $1 in state i at the investment horizon and zero otherwise.
State i occurs with probability πi. We consider an investor whose preferences
are characterized by a strictly increasing, concave expected utility function
in wealth. Then the investor’s problem is choosing portfolio {xi}n

i=1:

max
{xi}n

i=1

∑n
i=1 πiu (xi)

s.t.
∑n

i=1 pixi ≤ W∑n
i=1 1{xi≤K}πi ≤ δ

where K is the VaR level and δ the risk level. This implies that the probabil-
ity that the value of the investor’s portfolio falls below K at the investment
horizon cannot exceed δ. While we consider any value of δ ∈ [0, 1], most
preceding literature has focused on the two extreme values, δ = 1 and δ = 0.

Consider first the case where δ = 1, such that the risk constraint is never

1The VaR problem has received considerable interest, not the least since it forms the
foundation of market risk regulations (see Basel Committee on Banking Supervision, 1996).

2A problem is Non–deterministic Polynomial (NP)–complete when no other NP prob-
lem is more than a polynomial factor harder and any problem in the class of NP-complete
is NP–hard. For example, the Travelling Salesman problem is NP–hard.
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binding. This is the traditional portfolio allocation setting. Solving such
problems does not introduce any significant difficulty as standard method-
ology readily applies, see e.g. (Kuhn and Tucker, 1951; Uzawa, 1958), and
optimum is ensured for strictly concave utility functions. It follows that this
portfolio problem is readily solved in polynomial time.

The second case is portfolio insurance where δ = 0 and corresponds to a
deterministic floor constraint where losses cannot fall below the exogenously
determined level, K. Grossman and Vila (1989) demonstrate that the solu-
tion to this problem is straightforward, where in effect the investor buys a
put option with exercise price K. We demonstrate below that the portfolio
insurance problem falls into the P class and hence is solvable in polynomial
time. An early example of a non–deterministic constraint is the safety–first
portfolio selection program as analyzed in the Arzac and Bawa (1977) lexico-
graphic interpretation. However, safety–first may lead to strained portfolio
choices: A portfolio manager may allocate just enough to the safe asset to
meet the downside risk constraint, while the remainder of funds is invested in
the option with the highest strike price available (see Dert and Oldenkamp,
1997; Vorst, 2000).

The general case considered in this paper, allows δ to take any value between
zero and one. This is the VaR problem where the investor does not want
wealth to fall below the level K with more than a given probability δ. We
demonstrate in Theorem 1 that this problem belongs to the class of NP–
hard problems, implying the problem is computationally complex unless the
number of states of nature is sufficiently small or the VaR constraint is non–
binding. The reason for the complexity is that the set of feasible portfolios is
no longer convex, in fact, the budget set has disjoint components, each con-
taining a local optimum. In an economy with few states it is straightforward
to consider all components to find the solution. However, in general, the
number of local maxima can increase exponentially in the number of states,
i.e., the number of local maxima becomes potentially n!.

We demonstrate below how such a non–deterministic downside risk constraint
may also change the qualitative aspect of the solution in an important way.
It is well known that the optimal portfolio resulting when δ = 0 or δ = 1 is
monotonic in the state price density. In a recent paper, Basak and Shapiro
(2001) demonstrate that the VaR constrained optimal portfolio is monotonic
in the state price density in a Brownian motion setting with continuous re-
balancing. In contrast, we show this feature of the solution is lost with the
introduction of the VaR constraint when the state space is discrete. Never-
theless, for the discrete state space problem we derive a sufficient condition,
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i.e. a restriction on the state price density, such that the optimal portfolio
of the discrete problem is monotonic in the state price density. Moreover,
we show that investors have an incentive by means of financial innovation
to create apparently redundant securities to meet this condition. These new
securities also render the initial NP-hard problem easily solvable, since the
monotonicity in the state price density guarantees polynomial time solutions.

The literature on financial innovations recognizes three distinct categories
of innovation. Initial models document how financial innovation is used to
complete markets, see Ross (1976). The second category strictly stays within
the incomplete markets paradigm, i.e., even after the introduction of new se-
curities the market remains incomplete. In this case, some investors have an
incentive to issue new securities, but this need not improve efficiency, (see
e.g. Allen and Gale, 1988, 1991). On a general level, these two categories of
financial innovation thus reflect the issues discussed in the second best liter-
ature. A third category discusses financial innovation in a complete market
setting where the marketable securities, which are bundles of (non-traded)
elementary securities, achieve complete spanning. In this case regulation
prohibits unlimited trading in available securities. Miller (1986, 1992) ar-
gues that financial innovation is often driven by regulation, e.g. short sale
restrictions. Such trading friction gives an incentive for financial innovation
via unbundling of states, in order to achieve the Pareto optimal free market
outcome through trading the elementary securities. A representative example
of this approach is Chen (1995). Recently Grinblatt and Longstaff (2000) in
an empirical study argue that stripping and trading separately the principal
and coupons of treasury bond helps in completing markets and overcom-
ing frictions (which explains why rebundling is observed simultaneously with
unbundling).

In this paper we introduce a fourth category of financial innovations in com-
plete markets, where all elementary securities are freely traded. We demon-
strate that there may nevertheless remain an incentive for financial innovation
whereby elementary securities are split up and new states are artificially cre-
ated through a randomizing devise. We show that the demand for this type
of innovation is triggered by the imposition of non–deterministic downside
risk constraints, such as VaR. In this case the splitting of states can help in
reducing the negative effects of risk constraints on individual expected utility.
An example of this type of securities, discussed below, is the lottery bonds
issued by many European governments. Lottery bonds are bonds for which
part of the issue is called early through a randomizing device. We show that
such securities may simplify the investor’s portfolio allocation problem.
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The condition under which the VaR constrained problem becomes simple is
the special case where the probabilities and payoffs can be weakly reversely
ordered, i.e., πi ≤ πj iff pi ≥ pj for all i, j = 1, 2, ..., n. This means that the
states can be ordered such that π1 ≤ π2 ≤ · · · ≤ πn while p1 ≥ p2 ≥ · · · ≥ pn.
We demonstrate that under this reverse ordering condition we can write the
risk constraint as a restriction on price pi only.

3 In effect under this condition,
the VaR constrained problem is reduced to a generalized portfolio insurance
problem. Consider the special case of uniform probabilities. Since probabili-
ties do not play a role for any δ, the intuition is immediate. Under the reverse
ordering condition, we show that the risk constrained problem enables poly-
nomial time solutions by employing techniques similar as Grossman and Vila
(1989). Without the reverse ordering condition, utility maximization sub-
ject to the probabilistic VaR constraint falls into the category of NP–hard
problems. If however, state splitting is possible, e.g., there are no regulatory
hurdles, we show it is possible to split the states such that the reverse order-
ing condition is satisfied. Relative to the augmented state space, the problem
has a polynomial time solution. We also demonstrate the positive impact of
state splitting in an example where the VaR constraint is met optimally by
investing in one of the two new states. Subsequent to state splitting, the
optimal portfolio is monotonic in the state price density.

The structure of the paper is as follows. In Section 2 we demonstrate that the
risk constrained problem is NP–hard. Following in Section 3 we introduce the
reverse ordering condition and discuss portfolio insurance and uniformly dis-
tributed states. In Section 4 we allow for financial innovation and document
their benefits. Section 5 concludes the paper.

2 Utility Maximization and Risk Constraints

2.1 The Standard Portfolio Problem

Consider first the standard portfolio choice problem (1) with δ = 1, which
we refer to as the unconstrained case because the VaR constraint is never
binding. Let λ denote the Lagrange multiplier associated with the budget
constraint in (1) which is binding. An interior solution to (1), if it exists, is
characterized by the budget constraint and

xi = (u
′)−1

(λpi/πi) , ∀i. (2)

3Instead of also involving probabilities πi.
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Without loss of generality, the states can then be ordered such that

λpi/πi ≥ λpi+1/πi+1 , ∀i (3)

or, equivalently, such that
xi ≤ xi+1 , ∀i.

Given the assumptions above, the first–order conditions guarantee that (2) is
a globally optimal solution when the utility function is strictly concave and
the domain is a bounded convex set.

Consider second the portfolio choice problem (1) with δ = 0. Grossman
and Vila (1989) demonstrate that this portfolio insurance problem has the
intuitively appealing feature that the investor buys a put with exercise price
K. The more recent Value–at–Risk (VaR) constraint, discussed in the next
Section, is an extended portfolio insurance problem where the investor’s net
worth cannot fall below K with more than δ probability.

2.2 Risk Restrictions

Public policy often restricts the risk that can be assumed by a strict subset
of all investors. For example, national supervisory authorities impose VaR
constraints on commercial banks in order to contain market risk. Other
financial intermediaries like pension funds work with self–imposed constraints
like portfolio insurance where the investors’ net worth is never allowed to fall
below a certain predetermined level K.

The formal definition of the VaR constraint is as follows.

Definition 1 (Value–at–Risk). VaR is the zero’th lower partial moment.
For any discrete distribution, the VaR constraint can be written as

∑n
i=1 1{xi≤K}πi ≤ δ

where δ is the associated probability level.

To ensure the existence of a finite solution to the investor’s portfolio choice
problem, |xi| < ∞,∀i, two different approaches have been suggested. First,
one can rule out unlimited borrowing. For presentational simplicity, we sim-
ply rule out all short sales in Arrow-Debreu securities. However, all results go
through with an arbitrary, finite lower bound on short selling. Moreover note
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that this does not constrain investors from short selling non-elementary secu-
rities. Also note that this does not affect the feasibility of the VaR problem.4

Then the investor’s problem can be stated as:

Problem 1.

max
{xi}n

i=1

n∑
i=1

πiu(xi) s.t.
n∑

i=1

pixi ≤ W∑n
i=1 1{xi≤K}πi ≤ δ

x1, x2, · · · , xn ≥ 0

Alternatively, we could impose mild regularity conditions on the investor’s
utility function.5 Since all examples below adhere to these regularity condi-
tions, the short selling restriction is not driving our results.

2.3 Solution Complexity and NP–hardness

In order to characterize the computational complexity, we relate the current
Problem 1 to the partition problem since the partition problem is known to be
NP–complete, and finding the solution to the partition problem is NP–hard.

Definition 2 (Partition Problem). Let {a1, a2, · · · , an; b} be n+1 positive
numbers such that

n∑
i=1

ai = 2b. Does a subset S ⊂ {1, 2, · · · , n} exist such
that

∑
i∈S

ai = b?

Theorem 1. The feasibility of Problem 1 is NP-complete.

4Ruling out infinite shortsales is equivalent to preventing infinite borrowing. Impose
restriction, B, on borrowing then the investor’s problem can be stated as:

min
{xi}n

i=1

∑n
i=1 1{xi≤K}πi s. t.

n∑
i=1

pixi = W

x1, x2, · · · , xn ≥ −B

Let yi = xi +B, then it is equivalent to

min
{yi}n

i=1

∑n
i=1 1{yi≤B+K}πi s. t.

n∑
i=1

piyi = W +B
n∑

i=1

pi

y1, y2, · · · , yn ≥ 0
which for the purpose of the arguments in this paper is equivalent to ruling out short sales.

5Such as either the Inada conditions or the self–concordance condition, see Ingersoll
(1987, p. 189), and den Hertog (1995) respectively.
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Proof. It is trivial to see that the feasibility of Problem 1 is NP. To establish
NP–completeness, we only need show that the problem can be reduced to
the partition problem. From a given instance of the partition problem, let
us construct an instance of Problem 1. Let πi =

ai

2b
, pi = ai, 1 ≤ i ≤ n.

Let K = b,W = b2 and δ = 1
2
. We claim that the partition problem has

a feasible solution if and only if Problem 1 has a feasible solution. In fact,
if the partition problem has a feasible solution S, that is

∑
i∈S

ai = b, we set

xi = b if i ∈ S and xi = 0 otherwise. Then we have
n∑

i=1

pixi = b2,
∑

xi≥K

πi =
1
2
.

Thus x is a feasible solution of Problem 1. Conversely, assume x is a feasible

solution of Problem 1. We have
n∑

i=1

pixi = b2 and
∑

xi≥K

πi ≥ 1
2
. Denote

S = {1 ≤ i ≤ n|xi ≥ K}. We have

b2 =
n∑

i=1

pixi ≥
∑
i∈S

pib

∑
i∈S

πi =
∑
xi≥K

πi ≥ 1

2

Using pi = ai and πi = ai/2b we get

b ≥
∑
i∈S

ai,

∑
i∈S

ai ≥ b.

Hence we obtain
∑
i∈S

ai = b. This means that S is a feasible solution of the

partition problem.

It follows that finding the solution to the VaR constrained portfolio choice
Problem 1 is NP–hard. Hence, the optimal portfolio can be computed when
n is sufficiently small or the problem is otherwise simple (see below). In
general the number of local maxima becomes potentially n!, i.e., the number
of potential local maxima increases exponentially in the number of states.

Note that the proof of Theorem 1 allows for a risk neutral investor with
limited short sales. Thus, when the lexicographic interpretation of the safety-
first criterion is feasible, it is also burdened by the computational complexity.
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2.4 Characterizing the Optimal Portfolio

Example 1. Consider an economy with two states of nature, a VaR con-
straint and logarithmic utility.

maxx1,x2 π1 log(x1) + π2 log(x2)
s.t. p1x1 + p2x2 ≤ W

1{x1≤K}π1 + 1{x2≤K}π2 ≤ δ

Among the three possible ordering of probabilities and constraints, we con-
sider the case where 1 > δ > max (π1, π2) > 0, see Figure 1. In the Figure
L represents the unconstrained portfolio allocation that would arise in the
absence of a VaR constraint, which of course it violates. Due to the VaR
constraint, the relevant budget constraint is the two disjoint line segments
(0,W/p1)—N and M—(W/p2, 0). These segments are individually convex,
but not jointly, hence the Kuhn–Tucker conditions may only give a local
solution, since there are two local optima.

b

b

b

W
p1

W
p2

p2/π2
p1/π1

W−p2K
p1K

N

L

M

K

K

x1

x2

Figure 1: Concave utility and the VaR constraint
Either x1 or x2 must satisfy the risk level K. The budget constraint
is between points W/p1 and W/p2. Due to the shortsale restriction,
negative values are ruled out, and the line segment between N and M

is not feasible due to the VaR constraint. Hence the budget constraint
is the two disjoint pieces W/p1—N and M—W/p2.
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We can write the VaR constraint as a product, since either x1 ≥ K or x2 ≥ K:

L = π1log(x1) + π2log(x2)
+λ{W − p1x1 − p2x2}
+ψ{−(x1 −K)(x2 −K)}.

The necessary first order conditions are

π1
1

x1

− λp1 − ψ(x2 −K) = 0

π2
1

x2

− λp2 − ψ(x1 −K) = 0

λ {W − p1x1 − p2x2} = 0

ψ{−(x1 −K)(x2 −K)} = 0

λ ≥ 0, ψ ≥ 0.

Consider a specific parameterization. Assume π1 = 2/3, 2/3 < δ < 1,
p1 = 1/3, p2 = 1/4, W = 1/4, and K = 23/32. In the unconstrained case,
the optimal portfolio allocation would be x1 = 1/2 and x2 = 1/3, which is
represented by the point L in Figure 1. Note that this portfolio does not fulfill
the VaR constraint. To achieve this, suppose we adjust the cheaper state, i.e.
raise x1 toK (this appears to be cheaper because x1 is closer toK than x2 and
has a lower state price probability ratio, since p1/π1 = 1/2 < p2/π2 = 3/4).
This is labelled as N in Figure 1. Alternatively, we could raise x1 to K,
the resulting portfolio allocation is labelled as M in Figure 1. The following
Table summarizes the portfolio compositions and expected utilities:

Maxima x1 x2 EU

Unconstrained (L) 1/2 1/3 −0.83
VaR constrained (N) 23/32 1/24 −1.28
VaR constrained (M) 27/128 23/32 −1.15

The unconstrained solution L favors x1 over x2 since p1/π1 < p2/π2 (the
usual monotonicity property). The optimal VaR constrained portfolio up-
sets the usual ordering. Note that in the optimal VaR constrained solution,
the ratio x1/x2 is only a function of prices, p1 and p2, and the VaR constraint
K. In contrast, both prices and probabilities determine this ratio in the un-
constrained solution. Since probabilities do not determine the x1/x2 ratio
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in the VaR constrained case, the monotonicity suggested by the state price
density can be upset. For this reason all constrained local optima have to be
evaluated for finding the global maximum. For a more general problem, it
is possible to write a unified Lagrangian function with probabilistic integer
variables. However, since such integer variables are non differentiable, solu-
tions based on first order conditions are not feasible. With many states this
remains a cumbersome exercise.

With just two states we cannot fully do justice to the qualitative properties of
the VaR constrained solution. Therefore, we also give a four–state example.

Example 2. Let the investor’s utility function be u(x) = −1/x, which im-
plies a relative risk aversion parameter of 2. Let there be four states. The
following table lists the state probabilities and state prices of the four ele-
mentary securities.

Statistic States

i 1 2 3 4
πi 1/100 1/2 9/100 40/100
pi 1/100 1/8 1/100 1/40

Suppose wealth W = 39/90. It is then a simple matter to verify that,
in the absence of a VaR constraint, the investor chooses (x1, x2, x3, x4) =
(10/9, 20/9, 30/9, 40/9), which yields expected utility EU =

∑4
i=1 πiu (xi) =

−0.3510. Note that since the state price density is (p1/π1, p2/π2, p3/π3, p4/π4)
= (1, 1/4, 1/9, 1/16), the solution x1 ≤ x2 ≤ x3 ≤ x4 is in conformity with
(3). Suppose the VaR regulation stipulates δ = 0.4999 and K = 2.5.
The unconstrained solution does not meet the downside risk constraint,
since both x1 and x2 are below 2.5. Following the rule of thumb implied
by the state price density ordering, one would raise the consumption in
the state 2, as x2 is closest to the VaR level 2.5. In that case the in-
vestor chooses (x1, x2, x3, x4) ≈ (0.86, 2.50, 2.59, 3.45), with expected utility
EU =

∑4
i=1 πiu (xi) ≈ −0.3622. Note this portfolio allocation is feasible

and preserves the ordering of the state price density. This portfolio is, how-
ever, not the optimal solution. The investor is better off by taking x1 = 2.5.
This permits (x1, x2, x3, x4) ≈ (2.50, 2.14, 3.21, 4.28), with expected utility
EU =

∑4
i=1 πiu (xi) ≈ −0.3576. Although this is the optimal VaR restricted

portfolio, the allocation is not monotonic with respect to the state price den-
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sity since x1 > x2 < x3 < x4.

Statistic States EU

1 2 3 4
πi 1/100 1/2 9/100 40/100
pi 1/100 1/8 1/100 1/40

xi unconstrained 1.11 2.22 3.33 4.44 −0.3510
x2 constrained 0.86 2.5 2.59 3.45 −0.3622
x1 constrained 2.5 2.14 3.21 4.28 −0.3576

1

2

3

4

1
16

1
9

1
4

1

K

xi

pi

πi

+

+

+

+

b

b
b

b

bc

bc

bc

bc

+ + + +
b b b b

bc bc bc bc

EU = −0.351 Unconstrained

EU = −0.362 Local constrained Optimum

EU = −0.358 Global constrained Optimum

Figure 2: Monotonicity of solution

In the examples above the monotonicity of the optimal unconstrained allo-
cation with respect to the state price density is upset in the optimal VaR
constrained allocation. In Figure 2 the dotted line shows that the optimal
VaR constrained portfolio is in fact non–monotonic with respect to the state
price density. That is, the investor would be strictly worse off by restricting
attention to portfolios that exhibit monotonicity with respect to the state
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price density. Interestingly, Basak and Shapiro (2001) have recently shown
in a continuous time setting, that the VaR constrained portfolio allocation
is still monotonic with respect to the continuous state price density derived
from underlying Brownian motion. Example 2 shows that the discrete case
can be qualitatively different.

3 Conditions for Computational Simplicity

Given that the investor’s portfolio problem is NP–hard, it is valuable to
identify special cases which are easily solvable, i.e. P.

3.1 Portfolio Insurance

Portfolio insurance is a special case of Problem 1 where δ = 0 that can be
solved in polynomial time.

Corollary 1. Portfolio insurance is in the class P.

Proof. Grossman and Vila (1989) demonstrate that the problem is solved by
implementing a put at the desired VaR–level while the consumption in each
state is reduced to finance this put, in keeping with the first order conditions
of the unconstrained problem at the reduced wealth level. Order the state
consumption of the unconstrained problem in descending order x1 ≥ . . . ≥
xn. Suppose the VaR restriction becomes binding at xm < x1. A sequential
search procedure involving at the most n−m steps yields the optimal policy.
First check whether the put that ensures consumption at the VaR level in
statesm, . . . , n can be financed by reducing the consumption in the remaining
uninsured states. If this implies that consumption in state xm−1 drops below
the VaR level, restart the procedure by insuring consumption in states m−
1,m, . . . , n at the VaR level. Repeat this until the VaR level is met or
exceeded in all states.

3.2 Uniform Distribution

Suppose the probability distribution of the states is discrete uniform, i.e.,
π1 = πi,∀i. In that case, the probabilities clearly do not enter in deter-
mining the optimal portfolio allocation. Only prices of the states matter,
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with or without the downside risk constraint in place. Recall Example 1
and Figure 1, which showed that prices and the VaR level K determine
the optimum allocation in the downside risk constrained equilibrium, while
prices and probabilities determine the portfolio choice in the unconstrained
equilibrium. This latter conclusion is now replaced by recognizing that only
prices determine the allocation in both problems. In the unconstrained case
if prices are ordered by p1 ≤ p2 . . . ≤ pn, then xn ≥ x2 ≥ . . . ≥ xn. For the
VaR constrained case, the program for finding the optimal solution preserves
this monotonicity, and hence trivially the monotonicity with respect to the
state price density, and is, moreover, easily implemented. To find the opti-
mal VaR constrained allocation, first compute the unconstrained allocation.
Subsequently, start tracing the allocation up to K for the state with the
lowest price which falls below K in the unconstrained solution. Then turn
to the next cheapest state and raise it to K. Repeat this procedure until the
sum of the probabilities of the (most expensive) states which have xi < K is
less than or equal to the desired level δ. This takes at most n− 1 steps.
Example 3. Continuing with Example 1, assume state 1 has been split into
two equally probable states, labelled 1A and 1B, each with half the price
of the former state 1 security. We now have a three state economy with
π1A = π1B = π2 = 1/3. Assume, as before, U(x) = log(x), let W = 1/4,
K = 23/32, p2 = 1/4 but p1A = p1B = 1/6. It is easily verified that the ex-
pected utility, EU , of the unconstrained case and the VaR constrained case
with x2 = 23/32 is identical to the EU in Example 1, since the prices and
probabilities of states 1 and 2 in the new example are exactly half the price
and probability of state 1 in Example 1.

x1A x1B x2 EU

unconstrained 1/2 1/2 1/3 −0.83
x2 constrained 27/128 27/128 23/32 −1.15
x1A constrained 23/32 23/64 23/96 −0.93

However, since state 1 is now broken into two cheaper states, while state 2
has the price and probability parameters of Example 1, it is now optimal
to place the VaR constraint on state 1A (or, alternatively state 1B), rather
than raising the consumption of the more expensive state 2. To meet the
VaR constraint, the investor now minimizes the expenditure by raising the
allocation in those states which are closest to the VaR level as these are least
costly.
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3.3 Reverse Order Condition

We now generalize the previous case of uniform probabilities. Suppose that
prices and probabilities are weakly inversely ordered. Note that the previous
case of uniform distribution fulfills this inverse order condition. As we argue
below, this case is highly interesting from an economic point of view, since
it may be the result of financial innovation. Formally the condition is:

Condition 1. Problem 1 satisfies the reverse order condition if there exists
a labelling of the states such that the pairs (πi, pi) can be ordered such that

π1 ≤ π2 ≤ · · · ≤ πn

p1 ≥ p2 ≥ · · · ≥ pn

Remark 1. Note that the reverse ordering condition labelling satisfies the
complete market equilibrium condition (3).

Theorem 2. For any δ, let q be the number such that

q∑
i=1

πi ≤ δ <

q+1∑
i=1

πi. (4)

If (π, p) satisfies Condition 1 then Problem 1 can be transformed as follows:

max
n∑

i=1

πiu(xi) s.t.
n∑

i=1

pixi = W

0 ≤ x1 ≤ x2 ≤ · · · ≤ xn

xq+1 ≥ K

(5)

Proof. See Appendix A.

Theorem 3. The solution program to (5) is in P.

Proof. Note that (5) is a linear constrained optimization problem. The fea-
sibility problem of (5) is easy. We need only judge whether the inequality
system has solutions. To this end, consider the following linear program,

maxxq+1 s.t
n∑

i=1

pixi = W

0 ≤ x1 ≤ x2 ≤ · · · ≤ xn

(6)
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It is straightforward to see that the optimal value of (6) isW/(pq+1+· · ·+pn).
Therefore Problem 1 is feasible under Condition 1 if and only if W/(pq+1 +
· · ·+ pn) ≥ K. Consider the following constrained problem:

max
n∑

i=1

πiu(xi) s.t
n∑

i=1

pixi = W

xi ≥ 0, i = 1, 2, · · · , q
xi ≥ K, i = q + 1, q + 2, · · · , n

(7)

If u(x) is strictly concave, following Grossman and Vila (1989), we can prove
that there exists W ′ ≤ W , such that

hi(W
′) =

{
xi(W

′) i = 1, 2, · · · , q
xi(W

′) + max{K − xi(W
′), 0} i = q + 1, q + 2, · · · , n (8)

and {hi(W
′)} is an optimal solution of (7). In (8) {xi(W

′)} is the optimal
solution of the following simple portfolio optimization problem

max
n∑

i=1

πiu(xi) s.t
n∑

i=1

pixi = W ′

x1, x2, · · · , xn ≥ 0

Under Condition 1, we have 0 ≤ h1(W
′) ≤ h2(W

′) ≤ · · · ≤ hn(W
′). Thus

{hi(W
′)} is also a feasible solution of (5). Denote Γ = {x ≥ 0|

n∑
i=1

pixi =

W ; xq+1, · · · , xn ≥ K} the feasible solution set, and denote Ω the feasible

solution set of (5), i.e., Ω = {x ≥ 0|
n∑

i=1

pixi = W ; 0 ≤ x1 ≤ x2 ≤ · · · ≤
xn, xq+1 ≥ K}. It is obvious that Ω ⊂ Γ. We claim that {hi(W

′)} is an
optimal solution of (5). In fact, since Ω ⊂ Γ, we have V (Γ) ≥ V (Ω). Here
V (Γ) and V (Ω) are the optimal objective function values. As {hi(W

′)} ∈ Ω,
we have V (Ω) ≥

n∑
i=1

πiu(hi(W
′)) = V (Γ). This indicates {hi(W

′)} is the
optimal solution of (5) too.

4 Financial Innovation

In addition to the three traditional uses of financial innovation discussed in
the Introduction, we identify a new application which in general enhances
welfare, facilitates the characterization of the optimal portfolio allocation,
and especially reduces complexity. As noted in Section 2, the Value–at–
Risk constrained utility maximization Problem 1 is NP–hard. However, if

16



the reverse order Condition 1 holds, Problem 1 can be solved in polynomial
time. This suggests that if we are able to suitably transform the state space
to satisfy the reverse order condition, then the transformed Problem 1 will
have a polynomial time solution.

4.1 State Splitting

Consider an economy where the original state space can be augmented by
splitting a state into two or more states. State splitting can be achieved by
applying a public randomization devise when state i arises (such as a roll of
dice). This augments the original state space.

Definition 3. State splitting by an integer factor γi entails dividing state i
into γi equally likely sub–states, each of which occur with probability πa

i =
πi/γi and cost p

a
i = pi/γi.

Example 1 (continued). We now relate Examples 1 and 3. State 1 in Ex-
ample 1 can be transformed into states 1A and 1B of Example 3 by splitting
state 1 in half so that one ends up with π1A = π1B = π2 = 1/3, while the
prices are respectively p1A = p1B = 1/6, p2 = 1/4. Thus state splitting for
the Example 1 configuration, turns this case into Example 3.

Claim 1. The procedure of state splitting weakly enhances the investor’s
expected utility.

This claim follows directly from the fact that any portfolio that was feasible
prior to state splitting, remains feasible.

We already showed that the case of Example 3 preserves the monotonicity of
the solution with respect to the state price density and raises the expected
utility. Denote the common denominator of the probabilities of the origi-
nal state space {πi|i = 1, .., n} by τ . This is always possible if e.g. the
probabilities are rationals.

The following is directly implied by the discussion in Section 3.2.

Claim 2. Suppose the state probabilities {πi|i = 1, . . . , n} have a common
denominator 1/τ for some integer τ . Then each state i can be split by factor
γi = πiτ , such that the probability distribution function associated with the
augmented state space is discrete uniform, πa

i = πa, the VaR constrained
optimal portfolio allocation is easily characterized since it is monotonic in
prices.
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We do not however require a common denominator since it is not necessary
to render the state space discrete uniform. In general, only some states have
to be adjusted to satisfying the reverse ordering condition from Section 3.3.

Claim 3. Suppose there exists a vector of integers (γ1, . . . , γn) such state
splitting implies that reverse ordering conditions is satisfied. Then the VaR
constrained portfolio optimization problem is in P.

Proof. Apply Theorem 3.

Since the expected utility of the risk constrained investor’s optimal portfolio
rises weakly in response to state splitting (as observed by the fact that the
Lagrange multiplier associated with the VaR constraint declines), investors
are in fact stimulated to financial innovation (state splitting) by the risk
regulation itself. Hence, we conclude that the probabilistic type of downward
risk constraints provides incentives to financial innovation.

One question unanswered by this theoretical analysis is whether state split-
ting is realistic. To address this issue, we offer two observations. First, note
that the state splitting procedure is somewhat analogous to the concept of
mixed strategy solutions in game theory, though here the randomization is
always weakly welfare improving. Second, we consider a class of securities
that split states. Many European government bonds are randomly callable.
A detailed example for the case of Swedish government bonds is given in
Green and Rydqvist (1997, 1999). For these so–called lottery bonds, each
year a predetermined (at the date of issue) percentage of the bond series is
retired early. An annual lottery determines which particular bonds are re-
tired. This lottery thus introduces exogenous randomness into the economy
and effectively creates new states. The prediction suggested by this paper is
that the demand for such securities will increase due to the imposition of the
VaR constraints by the BIS regulations. We show this by revisiting previous
examples.

Example 4. We demonstrate the effect of state splitting for the case of the
Example 1 portfolio problem. Recall Example 3, and note that since the
probabilities are uniform, it splits in effect the Example 1 states in such a
way that the reverse ordering condition holds. The unconstrained equilib-
rium of the Example 1 portfolio is on the MN—segment in Figure 3, while
the suboptimal VaR constrained portfolio is at N and the optimal VaR con-
strained portfolio is at M in terms of Figure 3. Due to state splitting, the
calculations in Example 3 indicate it is optimal to move from M in Figure
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3 to the position T exactly half way between Q and N on the line segment
QN of Figure 3.

b

b

b

b

b

b

b

b

b

b

b
T

K

K

K

Q

N

M

x2

x1B

x1A

W/p2

W/p1

Figure 3: Impact of state splitting
The cube is the VaR constraint, while the gray plane is the budget
constraint.

We conclude by illustrating that the reverse ordering condition is not neces-
sary for the optimal VaR constrained portfolio to be monotonic in the state
price density.

Example 5. Continuing with Example 2, this problem clearly has too many
states to allow depicting geometrically as we do in Figures 1 and 3. We
have already seen that the optimal VaR constrained solution, in the absence
of state splitting, is not monotonic with regards to the state price density.
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Suppose we split state 2 into two different states 2A and 2B with probabilities
π2A = 48/100 and π2B = 2/100 and prices p2A = 48/400 and p2B = 2/400
respectively. The optimal VaR constrained portfolio after state splitting
entails (x1 ≈ 1.11, x2A = 2.21, x2B ≈ 2.50, x3 ≈ 3.32, x4 ≈ 4.43) which
increases the expected utility to EU =

∑
i πiu (xi) ≈ −0.3511. Indeed, this

portfolio is monotonic with respect to the state price density, yet the reverse
ordering condition does not hold. However, one could split such that all
states are equally probably with πi = 1/100 and scale prices accordingly.
From this, optimality is established.

5 Conclusion

In recent years, Value–at–Risk has become the most common downside risk
measure in the financial industry, underpinning both internal risk manage-
ment systems and the supervisory systems. We investigate optimal portfolio
construction under risk constraints. The analysis of deterministic downside
risk constraints, e.g. portfolio insurance, is well known in the literature. In
contrast, VaR, which can be considered as probabilistic portfolio insurance,
has received scant attention. We demonstrate that the general VaR con-
straint turns the optimal portfolio selection problem into a complex problem,
belonging in the class of NP–hard.

We subsequently provide a sufficient condition, such that the portfolio se-
lection problem is no longer NP–hard, and demonstrate that investors have
an incentive for financial innovation by the introduction of new securities,
even though markets are initially complete. The new securities randomize
within existing primitive securities and effectively allow investors to better
approximate the VaR constraint and thus improve their expected utility. Fur-
thermore, these securities enable polynomial time solutions. This application
of financial innovation has not been considered in the extant literature.
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6 Proofs

Proof of Theorem 2. We show that Problem 1 can be transformed into a
simple problem if π and p satisfy the reverse order relation, that is, πi ≤ πj

if and only if pi ≥ pj. First we claim that there exists an optimal solution x∗

of Problem 1 such that 0 ≤ x∗
1 ≤ x∗

2 ≤ · · · ≤ x∗
n if (π, p) satisfies Condition 1.

For each feasible solution x of Problem 1 , we denote (x[1], x[2], · · · , x[n]) be
a permutation of (1, 2, · · · , n) such that xx[1] ≤ xx[2] ≤ · · · ≤ xx[n].

Let x∗ be an optimal solution of Problem 1. Let j be the smallest subscript
such that πx∗[j] ≥ πx∗[j+1] and px∗[j] ≤ px∗[j+1], and at least one of those two
inequalities is strict. Let

y =
px∗[j]x

∗
x∗[j] + px∗[j+1]x

∗
x∗[j+1]

px∗[j] + px∗[j+1]

and

z =
px∗[j]x

∗
x∗[j] + px∗[j+1]x

∗
x∗[j+1] − px∗[j]K

px∗[j+1]

.

Let us construct a new solution x+ such that

x+[j] = x∗[j + 1], x+[j + 1] = x∗[j];
x+[i] = x∗[i], i �= j, j + 1

x+
x+[j] = z, x+

x+[j+1] = K if x∗
x∗[j] < K ≤ x∗

x∗[j+1] and y < K

x+
x+[j] = y, x+

x+[j+1] = y otherwise

x+
x+[i] = x∗

x∗[i], i �= j, j + 1

In the sequel, we show that such a x+ is an optimal solution of Problem 1 as
well.

We can easily see that such defined x+ satisfies the budget constraint.

To prove the optimality of x+, we need show that x+ satisfies the order
condition and insurance constraint, and the objective function value of x+ is
not less than the value of x∗. To this end, we consider three cases separately:

Case 1: x∗
x∗[j] < K ≤ x∗

x∗[j+1] and y < K.

For this case, we have defined x+
x+[j] = z, x+

x+[j+1] = K. From the definition,
we can easily calculate that z < K ≤ x∗

x∗[j+1].
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Since px∗[j] ≤ px∗[j+1] and x∗
x∗[j] < K, we have

(px∗[j] − px∗[j+1])(x
∗
x∗[j] −K) ≥ 0 (9)

From (9), we can obtain

x∗
x∗[j+1] + x∗

x∗[j] ≤ K + z (10)

Let

λ1 =
x∗

x∗[j+1] −K

x∗
x∗[j+1] − x∗

x∗[j]

,

and

λ2 =
x∗

x∗[j+1] − z

x∗
x∗[j+1] − x∗

x∗[j]

.

From (10), we have

(i) x∗
x∗[j] ≤ z, hence the order condition x+

x+[1] ≤ x+
x+[2] ≤ · · · ≤ x+

x+[n] follows

from x∗
x∗[1] ≤ x∗

x∗[2] ≤ · · · ≤ x∗
x∗[n]. Further we can easily see that

∑
x+

i ≥K

πi ≥
∑

x∗
i ≥K

πi ≥ 1 − δ which follows from πx+[j] = πx∗[j+1] ≤ πx∗[j] = πx+[j+1].

This indicates that x+ satisfies the insurance constraint since x∗ satisfies the
insurance constraint.

(ii) λ1 + λ2 ≤ 1. Combine with u(x∗
x∗[j]) ≤ u(x∗

x∗[j+1]), we have

(1− λ1)(u(x
∗
x∗[j+1])− u(x∗

x∗[j])) ≥ λ2(u(x
∗
x∗[j+1])− u(x∗

x∗[j])) (11)

From the concavity of u(x), we also have

u(K) ≥ λ1u(x
∗
x∗[j]) + (1− λ1)u(x

∗
x∗[j+1]) (12)

u(z) ≥ λ2u(x
∗
x∗[j]) + (1− λ2)u(x

∗
x∗[j+1]) (13)

Combine (11) with (12) and (13), we can get

u(K)− u(x∗
x∗[j]) ≥ u(x∗

x∗[j+1])− u(z) (14)

Together with πx∗[j] ≥ πx∗[j+1], we obtain

πx∗[j]u(x
∗
x∗[j]) + πx∗[j+1]u(x

∗
x∗[j+1]) ≤ πx∗[j])u(K) + πx∗[j+1u(z)

= πx+[j]u(x
+
x+[j]) + πx+[j+1]u(x

+
x+[j+1]) (15)
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Case 2: x∗
x∗[j] ≥ K or x∗

x∗[j+1] < K.

In this case, we have defined x+
x+[j] = x+

x+[j+1] = y.

First we have
x∗

x∗[j] ≤ y ≤ x∗
x∗[j+1]

Hence the order condition remains true. Furthermore we have∑
x+

i ≥K

πi =
∑

x∗
i ≥K

πi ≥ 1− δ,

the insurance constraint is satisfied.

Next we like to show x+ remains optimal. For this purpose, we claim that

n∑
i=1

πiu(x
+
i ) ≥

n∑
i=1

πiu(x
∗
i ).

Notice that

n∑
i=1

πiu(x
+
i )−

n∑
i=1

πiu(x
∗
i )

= (πx∗[j] + πx∗[j+1])u(
px∗[j]x

∗
x∗[j]

+px∗[j+1]x
∗
x∗[j+1]

px∗[j]+px∗[j+1]
)

−(πx∗[j]u(x
∗
x∗[j]) + πx∗[j+1]u(x

∗
x∗[j+1])),

we only need to show that

(πx∗[j] + πx∗[j+1])u(
px∗[j]x

∗
x∗[j]

+px∗[j+1]x
∗
x∗[j+1]

px∗[j]+px∗[j+1]
)

≥ πx∗[j]u(x
∗
x∗[j]) + πx∗[j+1]u(x

∗
x∗[j+1])

Denote λ =
px∗[j]

px∗[j]+px∗[j+1]
. Then 0 < λ < 1.

From πx∗[j] ≥ πx∗[j+1], px∗[j] ≤ px∗[j+1], we have πx∗[j]px∗[j+1] ≥ πx∗[j+1]px∗[j].
Furthermore we can deduce that

px∗[j](πx∗[j] + πx∗[j+1])− (px∗[j] + px∗[j+1])πx∗[j] ≤ 0,

or equivalently
λ(πx∗[j] + πx∗[j+1])− πx∗[j] ≤ 0 (16)

From the monotone property of u(x), we have u(x∗
x∗[j]) − u(x∗

x∗[j+1]) ≤ 0.

Combine with (16), it follows that

[λ(πx∗[j] + πx∗[j+1])− πx∗[j]](u(x
∗
x∗[j])− u(x∗

x∗[j+1])) ≥ 0
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This inequality is equivalent to

(πx∗[j] + πx∗[j+1])[λu(x
∗
x∗[j]) + (1− λ)u(x∗

x∗[j+1])]

≥ πx∗[j]u(x
∗
x∗[j]) + πx∗[j+1]u(x

∗
x∗[j+1]) (17)

Notice that x+
x+[j] = x+

x+[j+1] = λx∗
x∗[j]+ (1− λ)x∗

x∗[j+1], from the concavity of

u(x), we can obtain that

u(x+
x+[j]) = u(x+

x+[j+1]) ≥ λu(x∗
x∗[j]) + (1− λ)u(x∗

x∗[j+1]) (18)

Combine (17) and (18), to get

(πx∗[j] + πx∗[j+1])u(x
+
x+[j]) ≥ πx∗[j]u(x

∗
x∗[j]) + πx∗[j+1]u(x

∗
x∗[j+1])

Hence we conclude that x+ is also an optimal solution of Problem 1.

Case 3: x∗
x∗[j] < K ≤ x∗

x∗[j+1] but y ≥ K.

In this case, we have also defined x+
x+[j] = x+

x+[j+1] = y.

First we have
∑

x+
i ≥K

πi =
∑

x∗
i ≥K

πi+πx∗[j] ≥ 1−δ, thus the insurance constraint

is satisfied.

Following same steps as Case 2, we can show that the order condition remains
true, and the objective function value of x+ is not worse than the objective
function value of x∗.

Therefore combining the three cases, we can conclude that there exists an
optimal solution x+ such that πx+[j] ≤ πx+[j+1] and px+[j] ≥ px+[j+1].

Using above technique repeatedly, we can always construct an optimal solu-
tion of which the order of entries is in the order of πi, if Problem 1 has an
optimal solution.

This indicates that there is an optimal solution x∗ such that

0 ≤ x∗
1 ≤ x∗

2 ≤ · · · ≤ x∗
n

if (π, p) satisfies Condition 1.

Let q be the number determined by (4). We show that x∗
q+1 ≥ K for such

an optimal solution. In fact, we have
∑

x∗
i <K

πi ≤ δ by the feasibility of x∗. If

x∗
q+1 < K, we get

∑
x∗

i <K

πi ≥
q+1∑
i=1

πi > δ
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from (4). This is a contradiction.

Conversely if x is a solution such that
n∑

i=1

pixi = W , 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn,

and xq+1 ≥ K, we have
∑

xi≥K

πi ≥
l∑

i=q+1

πi ≥ 1 − δ. x becomes a feasi-

ble solution of Problem 1. Hence we can conclude that Problem 1 can be
reformulated as (5) when (π, p) satisfies Condition 1.
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